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We present a class of statistical measures that can be used to quantify nonequilibrium surface growth. They
are used to deduce information about spatiotemporal dynamics of model systems for spinodal decomposition
and surface deposition. Pattern growth in the Cahn-Hilliard equationsused to model spinodal decompositiond
are shown to exhibit three distinct stages. Two models of surface growth, namely, the continuous Kardar-Parisi-
Zhang model and the discrete restricted-solid-on-solid model are shown to have different saturation exponents.
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Analysis of pattern forming processesf1–10g require sta-
tistical characterizations because the detailed structure of
patterns typically depends on uncontrollable factors such as
the precise initial state and stochastic effects. Although mea-
sures such as the structure factor, correlation length, and
roughness have been used to provide statistical descriptions
of patterns, there are many additional facets that are not
uniquely captured by these measuresf11g. The absence of a
sufficiently broad array of statistical measures also makes it
difficult to identify the consequences of specific phenomena,
such as the role played by stochasticity in spatiotemporal
dynamics. In this paper, we present a family of characteris-
tics, msb ,td, that are derived from the contours of a given
structure.

Consider two models of surface growth. One is the con-
tinuous Kardar-Parisi-ZhangsKPZd model, and the second is
the discrete restricted-solid-on-solidsRSOSd model. Com-
monly used statistical measures to analyze surface growth
and patterns include surface roughnesssi.e., the standard de-
viation of the heightsd, WLstd, whereL is the lattice size and
t the time, the correlation lengthf8g, and the mean domain
size f12,13g. For the KPZ and RSOS interfaces,WLstd, tu

when t!Lz. At very large times,WLst→`d,La f8g. The
growth exponentu, the dynamic exponentz, and the rough-
ness exponenta, depend only on the dimensionality of the
growth process and are independent ofL apart from finite-
size scaling correctionsf6g. It has been found numerically
that these exponents are the same in all dimensions for the
KPZ and the RSOS models. Based on the results, it has been
asserted that KPZ and RSOS belong to the same universality
class, although tilt-dependence studiesf14g have been used
to establish differences between them. One use of the avail-
ability of additional statistical measures is to test the validity
of such assertions. One of our conclusions is that there are
statistical features that are not common to KPZ and RSOS
models.

Nonequilibrium pattern formation and dynamics have also
been extensively studied in the context of spinodal decom-
position using the Cahn-Hilliard equationf1,12,13g. Their
spatiotemporal dynamics have been classified into two
regimes—an early stage where there are many small clusters

scluster size!Ld and a late stage where there are large in-
terconnected domains and cluster sizes are comparable toL.
The mean domain size in the late phase is found to grow in
time with an exponent13 f13g.

Consider a planar pattern represented by a scalar
field UsxW ,td, which can be the height of an interface, or
some relevant intensity field. One feature not captured by
the correlation length and roughness is the curvature
field of the contour lines ofU. The possibility of using
curvature for such an analysis has been proposed before
f11,15–19g, but in practice the results are very sensitive
to noise. The underlying reason is that the evaluation of
k=sUxxUy

2+UyyUx
2−2UxyUxUyd / sUx

2+Uy
2d3/2 is very sensitive

to errors in calculating the denominator. In place ofk,
one can use another measure, namely, the determinant of the
Hessian normalized by the variance ofU, D=sUxxUyy

−Uxy
2 d /VarsUd. Unlike k, the calculation ofD is fairly insen-

sitive to noise. Further, for typical local structures,D is pro-
portional tok.

The measures we define are

msb,td =1E d2xWuDub

E d2xW 2
1/4b

. s1d

Note that for eachb, msb ,td has dimensions of inverse
length. Furthermore, the measuresmsb ,td are invariant under
all rigid Euclidean transformationssi.e., translations, rota-
tions, and reflectionsd of a pattern. The use of moments,b,
allows us to emphasize regions with different values ofD,
thereby providing an array of length scales associated with
the structure. The use of multiple length scales is similar in
spirit to using generalized dimensionsf20,21g to characterize
strange attractors, although the spatiotemporal nature of the
dynamics for the models considered in this paper makes a
further connection difficult. In our analysis, we definessb ,td
as the growth rate ofmsb ,td, i.e., msb ,td,expfssb ,tdtg.

The organization of the paper is as follows. We first dis-
cuss the results of our analysis for the CHE, a paradigmatic
model for spinodal decomposition. We describe distinct
stages in the spatiotemporal dynamics usingmsb ,td. We then
proceed to analyze the KPZ and RSOS models and show that
during the initial stage,msb ,td does indeed lend additional
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credence to the suggestion that in the strong nonlinear cou-
pling limit, they do belong in the same universality class.
However, our analysis of the late stage shows that the satu-
ration exponents for the two models are different. The com-
putational techniques used to obtain the data for these mod-
els is discussed in detail elsewheref17g and will not be
expanded upon here.

The CHE models spinodal decomposition using the dy-
namics of a conservative fieldcsxW ,td via

]c

]t
=

1

2
¹2s− ¹2c − c + c3d. s2d

The Crank-Nicholson semi-implicit methodf22g used to in-
tegrate Eq.s2d allows us to choose time steps as large as 0.4
and enables us to investigate the dynamics of the CHE to
times large enough to observe saturation ofmsb ,td, e.g.,
T=4 000 000 for the lattice size 5122. An implicit integration
scheme is used to integrate the partial differential equations.
We deal with the nonlinear terms via a Taylor expansion to
lowest order indc=cst+dtd−cstd, and compute crossderiva-
tives explicitly. For instance, a quadratic termc2st+dtd is
represented by 1

2fc2std+c2st+dtdg in the semi-implicit
scheme. On expanding to lowest order indc, we find it is
approximated bycstdcst+dtd. The mean values and error
bars presented in the figures and text are obtained by aver-
aging over 12 runs.

The dynamics of domain growth is as follows: Beginning
from a random initial configuration,ucsxW ,tdu and the domain
size grow in time. For sufficiently larget, csxW ,td reaches its
equilibrium values of −1 or +1f1,13g. The behavior of
msb ,td is shown in Fig. 1sad. The dynamics can be separated
into three stages. Initially,msb ,td appears to grow as a power
law in time for about one-and-a-half decades, as seen in Fig.
1sad. There is a formation of small domains from the random
initial field. As seen from the uppermost curve of Fig. 1sbd,
the growth ratess1sb ,td for all b are nearly identical and
independent oft. During this stage, one contribution to
msb ,td comes from points near the domain boundaries. Al-
though the growth of domains reduces the number of inter-
facial points, this decrease is countered by the fact that
ucsxW ,tdu has not saturated, and hence there are contributions
to msb ,td from internal points. As a result,msb ,td increases
during this stage.

The crossover between stages 1 and 2 occurs when the
field c begins to saturate to its equilibrium values. A histo-
gram of interfacial heights clearly shows the concentration
near the equilibrium values of ±1. In stage 2slasting an order
of magnitude in timed, interior points of a domain make no
contributions tomsb ,td. As a result, the aforementioned de-
crease in interfacial points now leads to a decrease inmsb ,td.
The slopess2sb ,td in this stage are plotted in Fig. 1sbd. We
find that in this stage, the distinct moments relax at different
ratesfi.e., s2sb ,td is b dependentg. Moreover, it is seen that
the rate of relaxation of the larger moments is smaller than
that for the lower moments. Thus, straightening of a rela-
tively smooth domain boundary wall occurs at a faster rate
than changes in sharper features. Running averages reveal
that s2sb ,td is uniform until the end of this stage. Observe

one critical difference between stages 1 and 2, namely, that
the difference in relaxation of the distinct length scales can-
not be determined without multiple measures.

The domain size as measured from the two-point correla-
tion functionf13g becomes comparable toL between stages 2
and 3 ands2sb ,td changes during the transition. The spa-
tiotemporal dynamics beyond this involves a coarsening of
the large domains and elimination of the small ones. The
disappearance of small domains can be identified by peaks in
msb ,td for large values ofb. These peaks result from the
increase of local curvature during the disappearance of a do-
main. Figure 2 shows the effect of such an event onmsb ,td.
It is clear that the elimination of a domain is accompanied by

FIG. 1. Plots of the measure in time for various moments.
L=512. sad The noise-free case for differentb. I, II, and III corre-
spond to stages 1, 2, and 3.sbd The slopes vsb for stages 1, 2, and
3 for the noise-free case.
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a peak inmsb ,td. The decay ratess3sb ,td for the third stage
vary more than the others, as seen from the error bars in Fig.
1sbd. The error bars for the other stages are very small. How-
ever the general form ofs3sb ,td is the same; there is ab
dependence for small values but a saturation for higher val-
ues of b. At the end of stage 3, only a handful of large
domains remain; the only dynamics beyond this is an ex-
tremely slow straightening of the interfaces. A final dynamics
involves saturation ofmsb ,td with the approach to “true
equilibrium.”

Surface roughness and domain size cannot provide such
detailed information on the spatiotemporal dynamics. For a
given structure,WLstd saturates at the end of stage 1, and
there is no discernible difference beyond this. The domain
size grows asRstd, t1/3 at large times but also saturates be-
tween stage 2 and 3. When zero-mean external noisesampli-
tudeÎe=10−6d, we find that the dynamics in stage 3 is faster
than in the noise-free case, i.e.,us3sb ,tdu is larger for the
noisy dynamics. We also find that the saturation time of
msb ,td is proportional toÎe. We have also observed a similar
behavior for conserved noisef12g.

The KPZ equation is a paradigmatic model of nonequilib-
rium interfacial growth in the presence of lateral correlations
f2,7g. The rescaled version of the KPZ equationf23g gives
the dynamics of the height profilehsxW ,td at positionxW and
time t as

]hsx,td
]t

= ¹2h + Îls¹hd2 + hsxW,td. s3d

Here Îl is the parameter controlling the nonlinear term.
hsxW ,td is d-function-correlated noise of zero mean, which
represents a random particle flux. RSOS is a discrete coun-
terpart of the KPZ. Here, particles are added to a randomly

chosen sitei only if the addition ensures that all nearest-
neighbor height differencesuDhuøG, whereG is some pre-
determined positive integer.

Roughness and correlation function analyses of the dy-
namics of both KPZ and RSOS models show that their
growth and roughness exponents take similar values in all
dimensions, i.e., they are in the same universality class for
sufficiently large values ofl slù15d. In the initial stages,
the correlations spread across the entire lattice and the cor-
relation lengthz, t1/z, wherez,1.6. It has been established
numericallyf23g that the strong nonlinear coupling limit of
KPZ corresponds to the RSOS model in terms of the growth
and saturation exponents of the surface roughness.

The behavior ofmsb ,td for the KPZ modelsL=512d is
shown in Fig. 3. The dynamics is qualitatively similar to the
behavior of the surface roughness, and can be divided into
two distinct stages. In stage 1, the lateral correlations spread
across the entire lattice and we find thatmsb ,td decreases as
t−s1sb,td wheres1sb ,td is independent ofb and t within nu-
merical errors. The crossover between stages 1 and 2 signals
the saturation of the roughness. The plots labeled by the
dotted, dashed, and solid lines in Fig. 4 correspond to
s1sb ,td for l=1, l=2, andl=25, respectively.msb ,td for
the RSOS model exhibits a similar behavior during stage 1.
In Fig. 4, the plot with circles showss1sb ,td versusb for the
RSOS model. This corroborates the assertion that for the
largel limit, KPZ corresponds to the RSOS model in terms
of the growth exponents, since it is seen clearly thats1sb ,td
for KPZ with l=25 and for RSOS are within the error bars.

In stage 2 of Fig. 3,msb ,td saturates to aL-dependent
valuefgiven byLgsbdg wheregsbd is the saturation exponent.
However, in this case, we find thatgsbd for KPZ and
RSOS models, even at strong coupling, are very different.
For example,gsbd for the RSOS model is found to be
gs0.1d=−0.137±0.004, while that for the KPZ model
sl=25d is gs0.1d=−0.308±0.029 whenb=0.1. Forb=1.0,
the saturation exponent for RSOS isgs1.0d=−0.097±0.004,

FIG. 2. Bubble disappearance for theL=512 lattice. The actual
time is obtained by scaling thex-axis values by a factor 105. Notice
how the peak in the measure corresponds to the bubble disappearing
at approximately time 148 000. This is forb=3.4.

FIG. 3. Measure for the KPZ model for differentb. L=512.
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while that for the KPZ isgs1.0d=−0.213±0.005.
In summary, we have presented a set of characteristics

msb ,td that can be used to study spatiotemporal dynamics of
systems represented by a scalar fieldUsxW ,td. The measures
represent statistical features of the contour field. At a given
instant, msb ,td are a set of inverse length scales, and are
defined in terms of the determinant of the Hessian ofUsxW ,td.
Large values ofb emphasize regions with larger curvature of
contour lines.

The availability of a family of indexes allows us to pro-
vide a more comprehensive statistical description than is
possible from individual measures. For example, it was
shown for the CHE that during stage 2, relaxation of the

distinct length scales associated with the structure occurs at
different rates. This is very different from stage 1, where all
such scales grow asmsb ,td, t0.06. We are also able to iden-
tify instances where small domains of the pattern disappear
by searching for peaks inmsb ,td for large values ofb.

Analysis of the KPZ and the RSOS models shows two
stages in pattern evolution. For KPZ,msb ,td relaxes at a rate
that depends onl during stage 1. The rate of decays1sb ,td
for large values ofl stypically lù15d is seen to be the same
as for the RSOS model, thus reinforcing previous claims that
both models belong to the same universality class. However,
our analysis of surface contours provides an additional piece
of information, namely, that all length scalesm−1sb ,td asso-
ciated with the spatiotemporal dynamics of these interfaces
decay at the same rate.msb ,td saturates in stage 2 for both
models, and the saturation value depends on the system size
L asLgsbd. Interestingly, the functiongsbd for the two models
is different; after saturation, the structure of contours exhibit
nonuniversal characteristics. It is thus possible to determine
which of these models better represents the growth of an
experimental interface.

The measuresmsb ,td can conceivably find applications in
a diverse range of phenomena. Of particular interest is a
quantitative description of the growth of epitaxially grown
surfaces. Recently, a model has been proposedf24g that in-
cludes the free energy of mixing, phase-boundary energies,
and concentration gradient dependent stress. Computations
have shown several classes of far from equilibrium struc-
tures. In order to study effects of parameter variations, it is
necessary to analyze the behavior of statistical quantities like
msb ,td. A study of this model is currently in progress.

The authors thank R. Rajesh and K. E. Bassler for a criti-
cal reading of the manuscript and for useful discussions. This
research was partially funded by a grant from the National
Science Foundation.

f1g A. J. Bray, Adv. Phys.43, 357 s1994d.
f2g M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,

889 s1986d.
f3g J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett.62, 2289

s1989d.
f4g M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851

s1993d.
f5g J. S. Langer,Solids Far From Equilibrium, edited by C. Go-

drechesCambridge University Press, Cambridge, 1992d.
f6g F. Family and T. Vicsek,Dynamics of Fractal SurfacessWorld

Scientific, Singapore, 1991d.
f7g T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.254, 215s1995d.
f8g A.-L. Barabasi and H. E. Stanley,Fractal Concepts in Surface

Growth sCambridge University Press, Cambridge, 1995d.
f9g S. D. Sarma and S. V. Ghaisas, Phys. Rev. Lett.69, 3762

s1992d.
f10g S. D. Sarma, S. V. Ghaisas, and J. M. Kim, Phys. Rev. E49,

122 s1994d.
f11g Y. Hu, R. Ecke, and G. Ahlers, Phys. Rev. E51, 3263s1995d.
f12g R. Toral, A. Chakrabarti, and J. D. Gunton, Phys. Rev. Lett.

60, 2311s1988d.

f13g A. Chakrabarti, R. Toral, and J. D. Gunton, Phys. Rev. B39,
4386 s1989d.

f14g J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Rev. A45, 638
s1992d.

f15g G. H. Gunaratne, Q. Ouyang, and H. L. Swinney, Phys. Rev. E
50, 2802s1994d.

f16g G. H. Gunaratne, R. E. Jones, Q. Ouyang, and H. L. Swinney,
Phys. Rev. Lett.75, 3281s1995d.

f17g G. H. Gunaratne, D. K. Hoffmann, and D. J. Kouri, Phys. Rev.
E 57, 5146s1998d.

f18g J. Kondev, C. L. Henley, and D. G. Salinas, Phys. Rev. E61,
104 s2000d.

f19g J. Kondev and C. L. Henley, Phys. Rev. Lett.74, 4580s1995d.
f20g H. G. E. Hentschel and I. Procaccia, Physica D8, 435s1983d.
f21g T. C. Halseyet al., Phys. Rev. A33, 1141s1986d.
f22g W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical Recipes In CsCambridge University Press,
Cambridge, 1995d.

f23g J. G. Amar and F. Family, Phys. Rev. A41, 3399s1990d.
f24g W. Lu and Z. Suo, J. Nanopart. Res.2, 333 s2000d.

FIG. 4. The slopes vsb for variousl values compared with the
RSOS slopes.

G. NATHAN AND G. GUNARATNE PHYSICAL REVIEW E71, 035101sRd s2005d

RAPID COMMUNICATIONS

035101-4


