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We present a class of statistical measures that can be used to quantify nonequilibrium surface growth. They
are used to deduce information about spatiotemporal dynamics of model systems for spinodal decomposition
and surface deposition. Pattern growth in the Cahn-Hilliard equétised to model spinodal decomposition
are shown to exhibit three distinct stages. Two models of surface growth, namely, the continuous Kardar-Parisi-
Zhang model and the discrete restricted-solid-on-solid model are shown to have different saturation exponents.
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Analysis of pattern forming processgk-10Q] require sta- (cluster size<L) and a late stage where there are large in-
tistical characterizations because the detailed structure aérconnected domains and cluster sizes are comparahle to
patterns typically depends on uncontrollable factors such ashe mean domain size in the late phase is found to grow in
the precise initial state and stochastic effects. Although meaime with an exponen% [13].
sures such as the structure factor, correlation length, and consider a planar pattern represented by a scalar
roughness have been used to provide statistical descriptiong|q y(x,t), which can be the height of an interface, or

of patterns, there are many additional facets that are nQlyme relevant intensity field. One feature not captured by
uniquely captured by these measufe|. The absence of a &he correlation length and roughness is the curvature

ngglmﬁr][tly dbro;’;_ld ?rr]ray of statistical m]?asure_zfs alio makes ield of the contour lines ofU. The possibility of using
: 'ﬁu Oﬂ'] en 'Ify Ie codnsbequ?nchesct)_ _?pe_u Ic pt.e?omenzﬁurvature for such an analysis has been proposed before
such as the role played by stochasticity in spatotempor 11,15-19, but in practice the results are very sensitive
dynamics. In this paper, we present a family of characteris

. . : to noise. The underlying reason is that the evaluation of
tics, u(B,1), that are derived from the contours of a given K:(UXXU§+UyyU)z(—2UXyUXUy)/(U§+U§)3’2 is very sensitive

structure. ; ; g
- . to errors in calculating the denominator. In place mf
Consider two models of surface growth. One is the con- g P a

. . .~ one can use another measure, namely, the determinant of the
tlnuoqs Kardar-Pa_nerhar_@(PZ) model, and the second is Hessian normalized by the variance of, A=(UnU,,

the discrete restricted-solid-on-soli@®@SOS model. Com- —_U2))/Var(U). Unlike x, the calculation of\ is fairly insen-
monly used statistical measures to analyze surface growth XY 0 ' . Y

and patterns include surface roughnéss, the standard de- sitive to noise. Further, for typical local structurésjs pro-
viation of the heights W, (t), whereL is the lattice size and portional tox.

t the time, the correlation lengtt8], and the mean domain The measures we define are

size[12,13. For the KPZ and RSOS interfacedj (t) ~t’ 1/48

whent<L? At very large timesW, (t—o)~L% [8]. The fd2>2|A|B

growth exponend, the dynamic exponerz and the rough- = = 1
: - (B : (1)

ness exponend, depend only on the dimensionality of the 425

growth process and are independentLofpart from finite- X

size scaling correctiongg]. It has been found numerically

that these exponents are the same in all dimensions for thigote that for eachB, w(B,t) has dimensions of inverse
KPZ and the RSOS models. Based on the results, it has beggngth. Furthermore, the measuyeg3,t) are invariant under
asserted that KPZ and RSOS belong to the same universalifyj| rigid Euclidean transformationé.e., translations, rota-

class, although tilt-dependence studi¢d] have been used tjons, and reflectionsof a pattern. The use of momenys,
to establish differences between them. One use of the availjlows us to emphasize regions with different valuesiof
abl'lty of additional statistical measures is to test the Va”ditythereby providing an array of |ength scales associated with
of such assertions. One of our conclusions is that there al®e structure. The use of mu|t|p|e |ength scales is similar in
statistical features that are not common to KPZ and RSO@pmt to using genera”zed dimensiom,zﬂ to characterize
models. strange attractors, although the spatiotemporal nature of the
Nonequilibrium pattern formation and dynamics have alsagynamics for the models considered in this paper makes a
been extensively studied in the context of spinodal decomfyrther connection difficult. In our analysis, we defin€3, t)
position using the Cahn-Hilliard equatidd,12,13. Their  gg the growth rate of(8,1), i.e., u(B,t) ~ exg o(8, Ot].
spatiotemporal dynamics have been classified into tWo The organization of the paper is as follows. We first dis-
regimes—an early stage where there are many small clusteggss the results of our analysis for the CHE, a paradigmatic
model for spinodal decomposition. We describe distinct
stages in the spatiotemporal dynamics usig,t). We then
*Electronic address: Girish.Nathan@mail.uh.edu proceed to analyze the KPZ and RSOS models and show that
"Electronic address: Gemunu@mail.uh.edu during the initial stageu(B,t) does indeed lend additional
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credence to the suggestion that in the strong nonlinear cou
pling limit, they do belong in the same universality class.
However, our analysis of the late stage shows that the satu
ration exponents for the two models are different. The com-
putational techniques used to obtain the data for these mod
els is discussed in detail elsewhdrE?7] and will not be
expanded upon here.

The CHE models spinodal decomposition using the dy-
namics of a conservative fielgi(x,t) via

o _ Lo w2, .
=SV g ). @ £ . S e

-0.141 ~,
The Crank-Nicholson semi-implicit methd@2] used to in- ‘-,
tegrate Eq(2) allows us to choose time steps as large as 0.4 ~
and enables us to investigate the dynamics of the CHE t¢ 10 [ ['=
times large enough to observe saturationdf3,t), e.g., )
T=4 000 000 for the lattice size 542An implicit integration
scheme is used to integrate the partial differential equations 10t ;
We deal with the nonlinear terms via a Taylor expansion to 10 10 10
lowest order indy=y(t+ ) - yAt), and compute crossderiva- @ Int
tives explicitly. For instance, a quadratic teri(t+ &) is 0.2
represented by3[y2(t)+yAt+ )] in the semi-implicit
scheme. On expanding to lowest orderd, we find it is
approximated byi(t)(t+6t). The mean values and error
bars presented in the figures and text are obtained by avel
aging over 12 runs. ol

The dynamics of domain growth is as follows: Beginning
from a random initial configurationy(x,t)| and the domain
size grow in time. For sufficiently large #(X,t) reaches its __ —0-1T
equilibrium values of -1 or +11,13]. The behavior of %
m(B,1) is shown in Fig. 1a). The dynamics can be separated  _g5|
into three stages. Initially:(3,t) appears to grow as a power

In p(B,t)
’
’

g = o

T
mnnu

Stage 2

law in time for about one-and-a-half decades, as seen in Fig T
1(a). There is a formation of small domains from the random =03 Stage 3
initial field. As seen from the uppermost curve of Figb)l

the growth ratesr(B,t) for all 8 are nearly identical and —0.4}

independent oft. During this stage, one contribution to Vertical lines in Stage 3 represent errorbars

u(B,t) comes from points near the domain boundaries. Al-
though the growth of domains reduces the number of inter- -0-50 1 2 3
facial points, this decrease is countered by the fact thai() B

|¢/(X,t)| has not saturated, and hence there are contributions FIG. 1. Plots of the measure in time for various moments.

to u(B,1) from internal points. As a resull(B,t) increases | =51 (g) The noise-free case for differept I, I, and Il corre-

during this stage. spond to stages 1, 2, and(®) The slopes v for stages 1, 2, and
The crossover between stages 1 and 2 occurs when thefor the noise-free case.

field ¢ begins to saturate to its equilibrium values. A histo-

gram of interfacial heights clearly shows the concentratiorone critical difference between stages 1 and 2, namely, that
near the equilibrium values of £1. In stagél@sting an order the difference in relaxation of the distinct length scales can-
of magnitude in timg interior points of a domain make no not be determined without multiple measures.

contributions tou(B,t). As a result, the aforementioned de-  The domain size as measured from the two-point correla-
crease in interfacial points now leads to a decreagd Mt).  tion function[13] becomes comparable tobetween stages 2
The slopesr,(B,t) in this stage are plotted in Fig(d. We  and 3 ando,(8,t) changes during the transition. The spa-
find that in this stage, the distinct moments relax at differentiotemporal dynamics beyond this involves a coarsening of
rates[i.e., o,(8,t) is B dependert Moreover, it is seen that the large domains and elimination of the small ones. The
the rate of relaxation of the larger moments is smaller tharglisappearance of small domains can be identified by peaks in
that for the lower moments. Thus, straightening of a relau(8,t) for large values of3. These peaks result from the
tively smooth domain boundary wall occurs at a faster raténcrease of local curvature during the disappearance of a do-
than changes in sharper features. Running averages revenhin. Figure 2 shows the effect of such an evenudg,t).

that o(8,t) is uniform until the end of this stage. Observe It is clear that the elimination of a domain is accompanied by
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FIG. 2. Bubble disappearance for the512 lattice. The actual FIG. 3. Measure for the KPZ model for differefit L=512.

time is obtained by scaling theaxis values by a factor 20Notice
how the peak in the measure corresponds to the bubble disappearipggsen sita only if the addition ensures that all nearest-

at approximately time 148 000. This is f=3.4. neighbor height differencedh|<T", wherel is some pre-
determined positive integer.
a peak inu(B,t). The decay ratess(8,t) for the third stage Roughness and correlation function analyses of the dy-

vary more than the others, as seen from the error bars in Figlamics of both KPZ and RSOS models show that their
1(b). The error bars for the other stages are very small. Howdrowth and roughness exponents take similar values in all
ever the general form of5(3,1) is the same; there is A dimensions, i.e., they are in the same universality class for
dependence for small values but a saturation for higher vagufficiently large values ok (A=15). In the initial stages,
ues of 8. At the end of stage 3, only a handful of large the correlations spread across the entire lattice and the cor-
domains remain; the only dynamics beyond this is an exlelation lengthy ~t2, wherez~ 1.6. It has been established

tremely slow straightening of the interfaces. A final dynamicshumerically[23] that the strong nonlinear coupling limit of
involves saturation ofu(B,t) with the approach to “true KPZ corresponds to the RSOS model in terms of the growth

equilibrium.” and saturation exponents of the surface roughness.

Surface roughness and domain size cannot provide such The behavior ofu(g,t) for the KPZ model(L=512) is
detailed information on the spatiotemporal dynamics. For £Nown in Fig. 3. The dynamics is qualitatively similar to the
given structureV, (t) saturates at the end of stage 1, andbehavior of the surface roughness, and can be divided into
there is no discernible difference beyond this. The domaifWO distinct stages. In stage 1, the lateral correlations spread
size grows a®(t) ~t*2 at large times but also saturates be-2Cross the entire Iattlc_:e _and we find théis, t) dec_regses as
tween stage 2 and 3. When zero-mean external rfaiseli-  { “*#" whereay(8,1) is independent o8 andt within nu-
tude\e=10"%), we find that the dynamics in stage 3 is fastermerical errors. The crossover between stages 1 and 2 signals
than in the noise-free case, i.¢ug(B,1)| is larger for the the saturation of the roughness. The plots labeled by the
noisy dynamics. We also find that the saturation time ofdotted, dashed, and solid lines in Fig. 4 correspond to
w(B,1) is proportional toye. We have also observed a similar o1(B,1) for A=1, A=2, and\ =25, respectivelyu(s,t) for
behavior for conserved noiga?]. the RSOS model exhibits a similar behavior during stage 1.

The KPZ equation is a paradigmatic model of nonequilib-m Fig. 4, the plot With circles shows(8,1) Vergusﬁ for the
rium interfacial growth in the presence of lateral correlationsRSOS model. This corroborates the assertion that for the
[2,7]. The rescaled version of the KPZ equati@8] gives large\ limit, KPZ corresponds to the RSOS model in terms

the dynamics of the height profile(%,t) at positionx and ~ Of the growth exponents, since it is seen clearly a3, t)
timet as for KPZ with A=25 and for RSOS are within the error bars.

In stage 2 of Fig. 3u(B,t) saturates to d-dependent
ah(x,t) — R value[given byL"#] wherey(p) is the saturation exponent.
T:V2h+ VA(Vh)? + 7(X,1). () However, in this case, we find thai(g) for KPZ and

_ RSOS models, even at strong coupling, are very different.
Here Y\ is the parameter controlling the nonlinear term.For example,y(B) for the RSOS model is found to be
n(X,t) is S-function-correlated noise of zero mean, which ¥(0.1)=-0.137+0.004, while that for the KPZ model
represents a random particle flux. RSOS is a discrete courfA=25) is y(0.1)=-0.308+0.029 wherB=0.1. For3=1.0,
terpart of the KPZ. Here, particles are added to a randomlyhe saturation exponent for RSOS+i61.0)=-0.097+0.004,
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-0.07 ' T distinct length scales associated with the structure occurs at
B s et S different rates. This is very different from stage 1, where all
—0.08 | A=1 1 such scales grow gs(8,t) ~t%%. We are also able to iden-
tify instances where small domains of the pattern disappear
~0.09 | | by searching for peaks ip(3,t) for large values of3.
Analysis of the KPZ and the RSOS models shows two
0. stages in pattern evolution. For KPZ(g3,t) relaxes at a rate
) that depends oi during stage 1. The rate of decay(s,t)
) A=2 for large values ok (typically A =15) is seen to be the same
o 011/ as for the RSOS model, thus reinforcing previous claims that
both models belong to the same universality class. However,
-0.12} our analysis of surface contours provides an additional piece
of information, namely, that all length scalgs'(8,t) asso-
-0.13} ciated with the spatiotemporal dynamics of these interfaces
decay at the same ratg(3,t) saturates in stage 2 for both
014} + =25 + models, and the saturation value depends on the system size
L asL"?. Interestingly, the function/() for the two models
-0.15 . . . . is different; after saturation, the structure of contours exhibit
1 2 3 4 5 nonuniversal characteristics. It is thus possible to determine
B which of these models better represents the growth of an
FIG. 4. The slopes vg for various\ values compared with the experimental interface.
RSOS slopes. The measurea(8,t) can conceivably find applications in

. . _ a diverse range of phenomena. Of particular interest is a
while that for the KPZ isy(1.0=-0.213+0.005. .. quantitative description of the growth of epitaxially grown
In summary, we have presented a set of characterlstlc rfaces. Recently, a model has been prop&2éHthat in-

(8,1 that can be used to study sp_ahotemporal dynamics g ludes the free energy of mixing, phase-boundary energies
systems repre_se_nted by a scalar fielk, t). Th_e MEASUreS 54 concentration gradient dependent stress. Computations
represent statistical features of the contour field. At a given, oy e shown several classes of far from equilibrium struc-
instant, u(B,t) are a set of inverse length scales, and argres In order to study effects of parameter variations, it is
defined in terms of the determinant of the Hessial6f,t).  npecessary to analyze the behavior of statistical quantities like

Large values ofs emphasize regions with larger curvature of w(B,t). A study of this model is currently in progress.
contour lines.

The availability of a family of indexes allows us to pro-  The authors thank R. Rajesh and K. E. Bassler for a criti-
vide a more comprehensive statistical description than isal reading of the manuscript and for useful discussions. This
possible from individual measures. For example, it wasresearch was partially funded by a grant from the National
shown for the CHE that during stage 2, relaxation of theScience Foundation.
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